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Abstract 

Background:  Sodium formononetin-3ʹ-sulphonate (Sul-F) may alleviate I/R injury in vivo with uncertain mechanism. 
Endoplasmic reticulum (ER) stress-mediated apoptosis participates in the process of cerebral ischemia‐reperfusion 
(I/R) injury. Our aim is to figure out the effect of Sul-F on cerebral I/R injury and to verify whether it works through sup-
pressing ER stress-mediated apoptosis.

Results:  The cerebral lesions of middle cerebral artery occlusion (MCAO) model in SD rats were aggravated after 24 h 
of reperfusion, including impaired neurological function, increased infarct volume, intensified inflammatory response 
and poor cell morphology. After intervention, the edaravone (EDA, 3 mg/kg) group and Sul-F high-dose (Sul-F-H, 
80 mg/kg) group significantly alleviated I/R injury via decreasing neurological score, infarct volume and the serum lev-
els of inflammatory factors (TNF-α, IL-1β and IL-6), as well as alleviating pathological injury. Furthermore, the ER stress 
level and apoptosis rate were elevated in the ischemic penumbra of MCAO group, and were significantly blocked by 
EDA and Sul-F-H. In addition, EDA and Sul-F-H significantly down-regulated the ER stress related PERK/eIF2α/ATF4 and 
IRE1 signal pathways, which led to reduced cell apoptosis rate compared with the MCAO group. Furthermore, there 
was no difference between the EDA and Sul-F-H group in terms of therapeutic effect on cerebral I/R injury, indicating 
a therapeutic potential of Sul-F for ischemic stroke.

Conclusions:  Sul-F-H can significantly protects against cerebral I/R injury through inhibiting ER stress-mediated 
apoptosis in the ischemic penumbra, which might be a novel therapeutic target for ischemic stroke.

Keywords:  Formononetin, Cerebral ischemia-reperfusion injury, Endoplasmic reticulum stress, Cell apoptosis, 
Ischemic penumbra, Stroke

Introduction
Ischemic stroke is a common central nervous system dis-
ease and a common cause of death and disability around 
the world [1]. Ischemic stroke accounts for about 70% of 
all strokes, which is caused by insufficient blood supply 
and results in the immediate depletion of oxygen and glu-
cose in brain tissue [2]. Timely restoration of blood flow 
and reoxygenation remain the widely accepted methods, 
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although considerable progress has been made in the 
treatment of cerebral ischemia [3].

In terms of treatment, tissue plasminogen activa-
tor (t-PA) is the only thrombolytic drug approved by 
the Food and Drug Administration for the therapy of 
ischemic stroke, which dissolves thrombus by activat-
ing a proteolytic enzyme [4]. Early use of thrombolytic 
agents is beneficial for the recovery, rehabilitation and 
prognosis of acute ischemic stroke patients. However, 
there are still many obstacles that blocked the applica-
tion of the thrombolytic drugs, such as narrow therapeu-
tic window and high risk of hemorrhagic transformation 
[5, 6]. In addition, the cerebral I/R injury may occur 
after the restoration of blood circulation in the ischemic 
brain, seriously affecting neurons and ultimately leading 
to neuronal apoptosis [7]. Therefore, it is still necessary 
to explore drugs with wide clinical adaptability and high 
safety.

In China, traditional Chinese medicine (TCM) is widely 
used in the management of ischemic stroke, based on the 
advantage of promoting blood circulation to dissipate 
blood stasis. Buyang Huanwu Decoction (BHD), a classic 
prescription for stroke treatment, plays a protective role 
in cerebral I/R injury in vivo by promoting neurogenesis 
[8, 9], inhibiting neural apoptosis and alleviating inflam-
mation [10], stimulating angiogenesis and improving 
cerebral circulation [11]. Accumulating evidences have 
revealed that multiple components of BHD could ame-
liorate the negative effect of stroke [12–16]. Formonon-
etin (C16H12O4), an isoflavone compound separated from 
BHD, has demonstrated diverse pharmacological capabil-
ities, including neuroprotection [17], anti-inflammation 
[18], anti-oxidative stress [19], anti-apoptotic [20], and 
anti-tumor [21, 22]. However, poor water solubility lim-
ited the bioavailability of formononetin in central nerv-
ous system.

Subsequently, Sul-F (C16H11O7SNa, Chinese patent: 
ZL200710017326.5), a sulfonated derivative of formon-
onetin, has been synthesized and overcomes the above 
disadvantage. Recent researches revealed that Sul-F 
exerted beneficial effects in multiple cardiovascular and 
cerebrovascular diseases, including acute myocardial 
infarction [23]and stroke [24] in animal models. Moreo-
ver, Sul-F can reduce permeability of blood brain barrier 
(BBB) after cerebral ischemic injury as well as possess the 
effect of anti-apoptosis and anti-thrombosis [25]. These 
studies suggested that Sul-F maybe not only a poten-
tially effective drug for the treatment of ischemic stroke, 
but also a gospel of patients with ischemic stroke. Thus, 
it is of high importance to evaluate the benefits of Sul-F 
administration and the underlying mechanisms.

The mechanisms related to cerebral I/R injury are still 
far from clear and an effective prevention for cerebral 

I/R injury has not been established yet. Recent findings 
have shown that endoplasmic reticulum (ER) stress is 
an important signal pathway of neuronal injury caused 
by cerebral I/R injury [26–29]. ER plays vital roles in 
protein translocation, modification and folding, which 
is an essential organelle in eukaryotic cells [30]. When 
subjected to various strong stimulating factors, includ-
ing nutrient deficiencies, Ca2+ metabolic imbalance, 
toxin stimulation and sustained oxidative stress stimula-
tion, the cell homeostasis will be broken, which further 
leads to the massively accumulation of the misfolded 
and unfolded proteins in ER. Thus, the ER stress and 
unfolded protein response (UPR) will be initiated to help 
the misfolded and unfolded proteins restore to its nor-
mal structure through the activation of PERK, IRE1, and 
ATF4. By these processes, ER stress rebalances intercel-
lular homeostasis and protects cells from various stimu-
lus. However, overly-activated ER stress and UPR can 
cause damages [31]. Increased ER stress is observed in 
the ischemic penumbra of cerebral I/R injury rat model 
[32, 33]. Besides, inhibiting ER stress with compounds 
can significantly protect neurons against ischemic injury 
[26, 29, 34]. Even though evidences indicate that Sul-F is 
involved in the neuron protection against focal cerebral 
I/R injury [1], whether it can maintain ER homeostasis 
and reduce ER stress mediated neuronal apoptosis in cer-
ebral I/R injury rat is still unknown.

In this study, we investigated whether Sul-F treatment 
could protect neuron against cerebral I/R injury. Fur-
ther, we explored the protective effects of Sul-F through 
inhibiting apoptosis in penumbra. Finally, the underly-
ing mechanism of its anti-apoptosis ability was further 
revealed.

Materials and methods
Chemicals
Edaravone injection was purchased from Sinopharm 
Group Guorui Pharmaceutical Co. LTD (China). Sul-F 
(> 95% pure) was bought from Shijiazhuang Hairui Phar-
maceutical Technology Co. LTD (China). 2,3,5-triphe-
nylte-trazolium chloride (TTC) was acquired from Sigma 
(USA). Hematoxylin-eosin staining (HE) kit and terminal 
deoxynucleotidyl transferase mediated dUTP-biotin nick 
end labeling (TUNEL) kit were purchased from Biyun-
tian Biotechnology Co. LTD (China). Bcl-2, Caspase3, 
Bax, CHOP, p-PERK, p-eIF2α, p-IRE1, Caspase12 and 
ATF4 primary antibodies were purchased from Affinity 
(China).

Animals
All male Sprague-Dawley (SD) rats (grade SPF) were pur-
chased from the Sibford Co. LTD (Beijing, China). The 
rats of 290-310  g (8-10  weeks old) were supplied with 
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freely accessible food and water, and were housed in an 
environment with standard lighting conditions (12  h 
light/dark cycle), controlled temperature (20-25  °C) and 
humidity (40-60%). Before building MCAO model, all 
rats were fasted 12 h with freely accessible water.

Middle cerebral artery occlusion (MCAO)
MCAO rat model was established with an intralumi-
nal filament method as previously described [35]. After 
the rat was anesthetized with 2% sodium pentobarbital 
(0.3 mL/100 g) intraperitoneally (i.p), the anterior cervi-
cal region was exposed and opened along the midline of 
the neck to isolate the left common carotid artery (CCA), 
external carotid artery (ECA) and internal carotid artery 
(ICA). The ECA was ligated and CCA was clipped with 
an arterial clamp. In order to block the blood supply of 
the left middle cerebral artery, the monofilament nylon 
suture with a round tip was inserted into ICA via CCA 
with a depth of 18 ~ 20  mm. After 2  h of ischemia, the 
suture plug was removed about 0.5  cm and the blood 
perfusion was restored. The sham operation group 
was objected to the same operation without inserting a 
monofilament. The presence of neurological deficit was 
measured by Zea-Longa method and score point of 1-3 
indicated successful modeling and inclusion in the exper-
iment. The specific scoring criteria was as follows: 0, no 
neurological deficit; 1, failed to fully extend their left 
forepaw; 2, circling to the left when walking; 3, falling to 
the left when walking; 4, unable to walk spontaneously or 
has stroke-related death.

Animal grouping and drug administration
Based on experimental target and the principle of rand-
omization, all the rats were divided into 5 groups includ-
ing sham group (Sham group), ischemia-reperfusion 
group (MCAO group), edaravone group (EDA group, 
3 mg/kg), Sul-F high dose group (Sul-F-H group, 80 mg/
kg) and Sul-F low dose group (Sul-F-L group, 40 mg/kg). 
All rats were given the drug for the first time at 0 h of rep-
erfusion by tail vein injection with a volume of 4 mL/kg. 
The concentration of EDA injection was 30  mg/40  mL, 
and the dose was 3  mg/kg. The concentration of Sul-F 
low dose group was 200  mg/20  mL and the dose was 
40 mg/kg. Sul-F high-dose group was 400 mg/20 mL and 
80  mg/kg. Rats in MCAO group and Sham group were 
injected with equal volume of normal saline via tail vein. 
Rats in each group were given the second dose at 12  h 
reperfusion.

Neurological impairment score
According to the blind principle, neurological deficiency 
was evaluated by the trained investigators after 24  h 
of reperfusion. Neurological behaviors of all rats were 

evaluated by a 5-point scale, as referred previously [36]. 
The higher the score, the more serious nerve function 
injury is.

Histopathological examination
At 24 h post reperfusion, the rats were anesthetized with 
2% sodium pentobarbital (0.3  mL/100  g) i.p and then 
underwent quick decapitation. A portion of rats’ brain 
tissue was dissected out and fixed in 4% paraformalde-
hyde for 48  h. At the end of fixation, tissue processing 
was done to dehydrate in ascending grades of alcohol, 
clearing in xylene and embedded in paraffin wax. Paraf-
fin wax embedded tissue blocks were sectioned at 4 µm 
thickness with the Rotary Microtome (Leica, Germany). 
All the slides of brains were stained with HE. Then all the 
pathological changes were observed under optical micro-
scope (Leica, Germany).

TTC staining
The experiment was conducted according to previous 
study [1]. When neurological deficit examination was 
completed, the rats were deeply anesthetized with 2% 
sodium pentobarbital, then brains were taken out and 
sectioned coronally with a thickness of 2 mm after freez-
ing in -20 °C refrigerator for 20 min. Before fixed with 4% 
paraformaldehyde overnight at room temperature, the 
brain tissue slices were stained with 2% 2, 3, 5-triphenyl 
tetrazolium chloride (TTC) for 0.5  h at room tempera-
ture in the dark. The results showed that the surviving 
part of the brain section was red, while the dead part 
was pale. Image J (Version 1.49) was used to measure 
the infarct area and the whole area of each brain slice 
(Fig. 1A). The infarct volume ratio was calculated as fol-
lows: infarct volume ratio % = (infarct volume / whole 
brain volume) × 100%.

ELISA analysis
The blood collected from the aortaventralis was clotted 
in centrifugal tube (Henan Wenmei Experiment Co. Ltd, 
Henan, China) in room temperature for 20 min and cen-
trifuged at 12,000  rpm at 4 ℃ for 15  min to obtain the 
serum. The levels of TNF-α, Interleukin-6 (IL-6), and 
IL-1β in the serum were measured using ELISA kits 
(Beijing Bioske Biomedical Technology Co., Ltd, Beijing, 
China) according to the manufacturer’s instructions.

TUNEL staining
TUNEL staining was used to detect neuronal apoptosis. 
Briefly, the brain slices were dewaxed and rehydrated. 
Then, in order to block endogenous peroxidase activity, 
the sections were incubated with a methanol solution 
containing 3% H2O2 for 10  min at room temperature. 
Afterward, treated with TUNEL reaction mixture, the 
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brain sections were maintained in a 37  °C incubator for 
1  h. The fluorescence was captured with a laser confo-
cal microscopy (Leica, Germany). The results were pre-
sented as apoptosis ratio = (TUNEL positive cells)/(DAPI 
cells) × 100%.

Western blot analysis
Ischemic penumbra samples were obtained from 
ischemic hemisphere and preserved at -80 ℃. The BCA 
protein assay kit (MDL, Beijing, China) was used to 
measure the protein concentration of brain samples after 
the tissue was homogenized and lysed. Equal amounts of 
proteins were separated by sodium dodecyl sulfate poly-
acrylamide gel and transferred to polyvinylidene fluoride 
(PVDF) membrane. After blocking with 5% non-fat milk, 
PVDF membrane was incubated with primary antibody 
in 4 ℃ overnight. Then, the membrane was washed three 
times with Tris-buffered saline with Tween 20 (TBST). 
Thereafter, membranes were incubated with horseradish 
peroxidase-labeled secondary antibody for 2  h at room 
temperature. After incubation, the membranes were 
washed three times again with TBST. Afterwards, chemi-
luminescence imaging system (Clinx, Shanghai, China) 
was used to image and detect blots. All protein bands 
were quantitated by Image-Pro Plus.

Quantitative real‑time polymerase chain reaction 
(qRT‑PCR) analysis
Trizol (Invitrogen, USA) was used to extract total RNA 
from ischemic penumbra tissue and SuperScript III 
Reverse Transcription Kit (ABI-invitrogen, USA) was 
used to prepare cDNA. All qRT-PCR reactions were con-
ducted by ABI PRISM 7500 Sequence Detector System 
(Applied Biosystems, CA, USA). Relative gene expres-
sion was quantified via the 2−ΔΔCt approach. The primer 
sequences used in the qRT-PCR were as Additional file 1: 
Table S1.

Statistical analysis
All data was displayed in mean ± standard error of the 
mean (SEM) and analyzed by SPSS (version 20.0, Chi-
cago, USA). The normality of the data was checked with 
Shapiro-Wilk normality test, while P > 0.05 was consid-
ered to fit a normal distribution. Student’s t-test was 

used to analyze the statistical significance between two 
groups, one-way analysis of variance (ANOVA) was 
used to analyze the statistical significance among three 
or more groups. P value < 0.05 was considered statisti-
cally significant (Additional files 2, 3).

Results
Effect of Sul‑F on cerebral I/R injury
TTC assay was used to detect the brain infarct volume 
and Zea-Longa score was applied to evaluate the neu-
rological deficiency. HE staining was used to investigate 
the histopathological changes in the brain. Evidently, 
the infarct volume and neurological score signifi-
cantly increased in the MCAO group (47.88 ± 14.07% 
vs. 4.67 ± 2.94% of Sham group, P < 0.01; 3(3 ~ 3) vs. 
0(0 ~ 0) of Sham group, P < 0.01). Compared with 
the MCAO group, the administration of EDA and 
Sul-F significantly decreased the infarct volume and 
neurological score (18.10 ± 5.08 and 21.26 ± 5.06% 
vs. 47.88 ± 14.07%, P < 0.05; 2(1 ~ 2) and 1(1 ~ 2) vs. 
3(3 ~ 3), P < 0.01) (Fig. 1B, C). There was no significant 
difference between the EDA group and the Sul-F-H 
group (18.10 ± 5.08 vs. 21.26 ± 5.06, P > 0.05; 2(1 ~ 2) vs. 
2(1 ~ 2), P > 0.05).

As shown in Fig. 1D (red narrow), swelling and pyk-
nosis in cytoplasm and morphologic changes of apop-
tosis with karyopyknosis, karyorrhexis and apoptotic 
body were found in the MCAO group. The interven-
tion of EDA and Sul-F retained the basic structure of 
neurons and significantly reduced the morphologic 
changes of nerve cells. Moreover, high dose Sul-F 
exhibited a better effect than that of low dose.

Effects of Sul‑F on inflammation
The levels of TNF-α, IL-1β and IL-6 were increased when 
cerebral I/R injury occurred (TNF-α: 61.45 ± 2.76 vs. 
39.82 ± 3.13 of Sham group, P < 0.01; IL-1β: 51.38 ± 7.03 
vs. 27.58 ± 3.82 of Sham group, P < 0.01; IL-6: 93.53 ± 5.03 
vs. 29.43 ± 1.54 of Sham group, P < 0.01). Further, the lev-
els of TNF-α, IL-1β and IL-6 were decreased in the EDA, 
Sul-F-H (80 mg/kg) and Sul-F-L (40 mg/kg) groups, com-
pared to the MCAO group (Fig. 2, P < 0.01).

(See figure on next page.)
Fig. 1  The effects of Sul-F treatment on infarct volume, neurological score and pathological changes of I/R injured brains. A Infarct volume was 
determined with TTC staining. The white area defined the infarct area (n = 6). B The infarct volume was expressed as the ratio of (infarct volume / 
the whole brain volume) × 100% (n = 6). C Neurological score (n = 15). The neurological function of the rats after 24 h of reperfusion was evaluated 
according to the Zea-Longa score standard. The higher the score, the more severe the neurological impairment is. Neurological score data was 
presented as M (P25 ~ P75). **P < 0.01 compared with the Sham group, △△P < 0.01 compared with the MCAO group. Data were presented as 
mean ± SEM from at least three independent experiments. **P < 0.01 compared with Sham group, △P < 0.05 and △△P < 0.01 compared with the 
MCAO group. D Histopathological characteristics (n = 6). After 24 h reperfusion, the ischemic penumbra area of brain tissue was stained with HE, 
which was observed at 100 × and 400 × , respectively. Scale bar = 100 μm
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Fig. 1  (See legend on previous page.)
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Sul‑F attenuated cell apoptosis via inhibiting ERS induced 
by MCAO
Damage of nerve cells and impairment of neurological 
function were observed in MCAO rats and Sul-F allevi-
ated the injury of nerve cells and improved the neuro-
logical function (Fig. 1). Furthermore, we examined cell 
apoptosis in the ischemic penumbra by TUNEL staining 
and Western blot. As shown in Fig. 3A, B, compared with 
the Sham group, abundant apoptotic cells were found in 
the penumbra of rats in the MCAO group (52.26 ± 2.06 
vs. 10.99 ± 1.36, P < 0.01). However, the apoptotic rate 
was significantly reduced after the administration of 
Sul-F and EDA.

To further detect the molecular mechanism of Sul-F on 
apoptosis, we measured the expression of proteins asso-
ciated with apoptosis (pro-apoptotic protein: Bax; anti-
apoptotic protein: Bcl-2; the marker of apoptosis induced 
by ER  stress: CHOP) by Western blot. Compared with 
the Sham group, the protein expression levels of Bax, 
and CHOP significantly increased (Bax: 0.76 ± 0.04 vs. 
0.13 ± 0.03 of Sham group, P < 0.01; CHOP: 0.71 ± 0.08 
vs. 0.14 ± 0.02 of Sham group, P < 0.01), and those of 
Bcl-2 decreased in the MCAO group (0.13 ± 0.02 vs. 
0.61 ± 0.05 of Sham group, P < 0.01). Sul-F-H treat-
ment resulted in the reduction of Bax (0.41 ± 0.02 
vs. 0.76 ± 0.04 of MCAO group, P < 0.01), and CHOP 
(0.38 ± 0.04 vs. 0.71 ± 0.08 of MCAO group, P < 0.05), as 
well as the increase of Bcl-2 (0.40 ± 0.04 vs. 0.13 ± 0.02 of 
MCAO group, P < 0.01) level compared with the MCAO 
group (Fig. 3C, D). In addition, the mRNA expression lev-
els of CHOP, Bax and Bcl-2 were detected by qRT-PCR in 
all specimens (n = 5). Increasing levels of CHOP mRNA 

(1.84 ± 0.01 vs. 1.11 ± 0.03 of Sham group, P < 0.01) and 
Bax mRNA (1.84 ± 0.00 vs. 1.03 ± 0.02 of Sham group, 
P < 0.01) expression were found in the ischemic penum-
bra regions while the mRNA relative quantity of Bcl-2 
(0.42 ± 0.01 vs. 1.06 ± 0.03 of Sham group, P < 0.01) 
was decreased significantly in MCAO group. Sul-F-H 
treatment could significantly suppress CHOP mRNA 
(1.42 ± 0.01 vs. 1.84 ± 0.01 of MCAO group, P < 0.01) and 
Bax mRNA (1.44 ± 0.01 vs 1.84 ± 0.00 of MCAO group, 
P < 0.01) expression and enhance the mRNA relative 
quantity of Bcl-2 (0.72 ± 0.01 vs. 0.42 ± 0.01 of MCAO 
group, P < 0.05) (Fig. 3E). These data suggested that Sul-F 
protected against MCAO-induced neuron injury via 
inhibition of cell apoptosis; moreover, inhibiting neu-
ronal apoptosis induced by ER stress might be involved in 
the mechanism of the Sul-F protective effect on cerebral 
I/R injury.

Sul‑F protected against I/R injury induced by MCAO 
through suppressing apoptosis via the PERK and IRE1 
signaling pathways
To further investigate whether ERS was involved in the 
effect of Sul-F on apoptosis in MCAO rats, the expres-
sion levels of ERS marker proteins including phosphor-
ated-PERK (p-PERK), phosphorated-eIF2α (p-eIF2α), 
ATF4, phosphorated-IRE1 (p-IRE1), Caspase12 and Cas-
pase3 were detected by Western blot. As shown in Fig. 4, 
compared with the Sham group, the relative protein 
expression level of p-PERK (0.56 ± 0.02 vs. 0.11 ± 0.00 
of Sham group, P < 0.01), p-eIF2α (0.60 ± 0.08 vs. 
0.08 ± 0.02 of Sham group, P < 0.01), ATF4 (0.68 ± 0.08 
vs. 0.13 ± 0.02 of Sham group, P < 0.01), p-IRE1 

Fig. 2  Sul-F treatment significantly alleviated the I/R-induced serum levels of inflammatory factors including TNF-α, IL-6 and IL-1β, detected by 
ELISA (n = 13). A The concentration of IL-6 in serum of rats. B The concentration of TNF-α in serum of rats. C The concentration of IL-1β in serum 
of rats. Data were presented as mean ± SEM from at least three independent experiments. **P < 0.01 compared with the Sham group, △△P < 0.01 
compared with the MCAO group
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Fig. 3  Sul-F treatment significantly alleviated the I/R-induced apoptosis in the penumbra of brain after 24 h reperfusion. A TdT-mediated dUTP 
Nick-End Labeling (TUNEL) staining of I/R-induced apoptosis in penumbra, which was imaged at 100 × . TUNEL cells (red) and the nuclei (DAPI, 
blue). B The I/R-induced apoptosis presented as ratio = (TUNEL positive cells) / (DAPI cells) × 100% (n = 5). C Representative western blot analysis of 
CHOP, Bax (pro-apoptotic protein) and Bcl-2 (anti-apoptotic protein) in the penumbra of brain tissue (n = 6). D Histogram showing quantification of 
images in C (n = 6). The results were normalized to β-actin expression. E Histogram showing quantification of qRT-PCR (n = 6). Data were expressed 
as the mean ± SEM from different assays. **P < 0.01 compared with the Sham group, △P < 0.05 and △△P < 0.01 compared with the MCAO group, 
#P < 0.05 and ##P < 0.01 compared with the EDA group, aaP < 0.01 compared with the Sul-F-H group
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(0.84 ± 0.03 vs. 0.16 ± 0.01 of Sham group, P < 0.01), 
Caspase12 (0.71 ± 0.11 vs. 0.12 ± 0.01 of Sham group, 
P < 0.01), and Caspase3 (0.78 ± 0.07 vs. 0.13 ± 0.01 of 
Sham group, P < 0.01) were significantly increased in 
the MCAO group. Sul-F-H treated group significantly 
decreased the expression levels of p-PERK (0.28 ± 0.01 
vs. 0.56 ± 0.02 of MCAO group, P < 0.01), p-eIF2α 
(0.27 ± 0.02 vs. 0.60±0.08 of MCAO group, P < 0.01), 
ATF (0.36  ±  0.04  vs. 0.68 ± 0.08 of MCAO group, 
P＜0.01), p-IRE1 (0.49 ± 0.02 vs. 0.84 ± 0.03 of MCAO 
group, P < 0.01), Caspase12 (0.40 ± 0.05 vs. 0.71 ± 0.0.11 
of MCAO group, P < 0.05) and Caspase3 (0.40 ± 0.02 vs. 
0.78 ± 0.07 of MCAO group, P < 0.01).

Further investigation of qRT-PCR for ER stress marker 
genes revealed that there was a noticeable increase 
in PERK mRNA (1.82 ± 0.01 vs. 1.08 ± 0.02 of Sham 
group, P < 0.01), eIF2α mRNA (1.83 ± 0.01 vs. 1.06 ± 0.03 
of Sham group, P < 0.01), ATF4 mRNA (1.82 ± 0.01 
vs. 1.06 ± 0.03 of Sham group, P < 0.01), IRE1 mRNA 
(1.83 ± 0.01 vs. 1.09 ± 0.02 of Sham group, P < 0.01), Cas-
pase12 mRNA (1.83 ± 0.01 vs. 1.07 ± 0.07 of Sham group, 
P < 0.01) and Caspase3 mRNA (1.83 ± 0.01 vs. 1.07 ± 0.03 
of Sham group, P < 0.01) expression of the ischemic 
penumbra regions in MCAO group. Sul-F-H treatment 
could significantly suppress PERK mRNA (1.44 ± 0.01 
vs. 1.82 ± 0.01 of MCAO group, P < 0.01), eIF2α mRNA 
(1.43 ± 0.01 vs. 1.83 ± 0.01 of MCAO group, P < 0.01), 
ATF4 mRNA (1.46 ± 0.01 vs. 1.82 ± 0.01 of MCAO 

group, P < 0.01), IRE1 mRNA (1.43 ± 0.01 vs. 1.83 ± 0.01 
of MCAO group, P < 0.01), Caspase12 mRNA (1.45 ± 0.01 
vs. 1.83 ± 0.01 of MCAO group, P < 0.01) and Caspase3 
mRNA (1.44 ± 0.01 vs. 1.83 ± 0.01 of MCAO group, 
P < 0.01) expression (Fig. 4E, F). Together, the above data 
revealed that Sul-F exerted the protective effect in cere-
bral I/R injury through inhibited ER stress-induced apop-
tosis of neuron cells in ischemic penumbra.

Discussion
Ischemic stroke causes an estimated 4.4 million deaths 
each year worldwide, placing a huge physical, emotional 
and financial burden on patients, families and national 
health service [37]. Current therapeutic options in stroke 
are still limited and brain injury caused by cerebral I/R 
remains a major challenge for the application of conven-
tional management approaches. So there is an urgent 
need for a comprehensive strategy including neuropro-
tection and maximizing cerebral reperfusion rate to 
reduce reperfusion injury, and a comprehensive under-
standing of the pathophysiological process involved in 
cerebral I/R injury.

The neuronal damage in the ischemic region (penum-
bra) after cerebral I/R injury is slow and reversible [38, 
39]. Therefore, the key of the clinical treatment is to 
save the ischemic penumbra of dying neurons and pro-
mote damage nerve function recovery. TCM has accu-
mulated a wealth of experience in the treatment of 

Fig. 3  continued
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Fig. 4  Sul-F treatment significantly attenuated the I/R-induced ER stress (n = 6). A At 24 h post-reperfusion, levels of p-PERK, p-eIF2α, ATF4 were 
evaluated with western blot. B The histogram showed quantification of images in bar diagram. The relative value of band gray was measured with 
Image J (1.49 V) and normalized to that of β-actin. C The mRNA levels of PERK, eIF2α and ATF4 were evaluated with qRT-PCR. D Representative 
western blot results of p-IRE1, Caspase12 and Caspase3 were shown. E The histogram showed quantification of images in bar diagram. The relative 
value of band gray was measured with Image J (1.49 V) and normalized to that of β-actin. F The mRNA levels of IRE1, Caspase12 and Caspase3 
were evaluated with qRT-PCR. Data were expressed as the mean ± SEM from different assays. **P < 0.01 compared with Sham group, △P < 0.05 and 
△△P < 0.01 compared with the MCAO group, #P < 0.05 and ##P < 0.01 compared with the EDA group, aP < 0.05 and aaP < 0.01 compared with the 
Sul-F-H group
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stroke and modern pharmacology studies have shown 
that many Chinese herbal extracts can protect the neu-
rological function from cerebral I/R injury by reducing 
penumbra apoptosis in a variety of ways [40–43]. Sul-F, 
a synthesized compound of formononetin, exerted ben-
eficial effects in multiple cardiovascular and cerebro-
vascular diseases, including acute myocardial infarction 
[23] and stroke [24]. The aim of our study is to figure out 
the effect of Sul-F on cerebral I/R injury and to verify 
whether it works through suppressing ER stress-medi-
ated apoptosis.

First of all, we want to figure out whether Sul-F has 
therapeutic effect on the neuron damage induced by 
cerebral I/R. To this end, we used MCAO model in rats 
established by wire embolization to mimic the alterations 
of cerebral I/R injury [44]. Consistent with previous stud-
ies [45, 46], our results indicated that I/R increased the 
numbers of TUNEL-positive cells and protein expression 
levels of CHOP and Bax after 24 h of cerebral I/R in the 
penumbra, which partially indicated that apoptosis was 
activated in the penumbra. Our results demonstrated 
that Sul-F alleviated neurological deficits evaluated by 
Zea-Longa, decreased infarct volume, and ameliorated 
pathological injury of brain tissue after 24 h of reperfu-
sion. These data suggest that Sul-F could attenuate neu-
ronal damage during cerebral I/R injury by inhibiting 
apoptosis in the penumbra area.

Inflammatory response plays an important role in cere-
bral I/R injury. Activation of microglia and astrocytes and 
exudation of leukocytes are key steps of inflammatory 
response in the central nervous system [47]. During cer-
ebral I/R injury, the activated inflammatory cells synthe-
size and release inflammatory mediators, which in turn 
can further activate inflammatory cells, forming a vicious 
cycle and aggravating brain injury. IL-1 is secreted by 
activated astrocytes, oligodendrocytes and infiltrating 
macrophages after cerebral ischemia, which can promote 
the expression of adhesion molecules in endothelial cells, 
thereby aggravating local inflammatory response [48].The 
level of IL-1β in brain tissue of MCAO model rats began 
to increase at 6 h and reached the peak at 24 h, indicat-
ing that IL-1β was involved in the inflammatory response 
after cerebral I/R injury [49]. IL-6 plays a dual role in cer-
ebral I/R injury. In the acute phase, IL-6 acts as an inflam-
matory mediator to promote brain injury, while in the 
subacute phase, it acts as a neurotrophic mediator to play 
a neuroprotective role [50]. TNF-α, mainly derives from 
activated glial cells, especially microglia, has complex 
biological activities, and its inhibitors can alleviate cer-
ebral I/R injury [51].Previous researches demonstrated 
that a variety of TCM monomers could exert neuropro-
tective effects by reducing the levels of the inflamma-
tory mediators TNF-α, IL-1β and IL-6 induced by brain 

ischemia reperfusion [52–54]. In addition, the inflam-
matory response is related to the endoplasmic reticulum 
stress signaling pathway, which participate together in 
the development of cerebral I/R injury [55, 56]. Mean-
while, our result showed that the levels of TNF-α, IL-1β, 
and IL-6 elevated accompanied with the activation of 
ERS signaling pathway in the MCAO rats. Interestingly, 
Sul-F treatment can significantly decrease the concentra-
tion of these inflammatory mediators and also inhibit the 
activation of the ER stress pathway, which suggested that 
the neuroprotective effects of Sul-F may be associated 
with the inhibition of neurogenic inflammation through 
suppressing ER stress pathway.

EDA, a free radical scavenger [57], is an efficacy drug 
in the therapy of cerebral infarction [58] and has been 
recommended for AIS treatment by Chinese and Japa-
nese stroke care guidelines [59, 60]. EDA can scavenge 
many free radicals, such as hydroxyl (-OH), nitric oxide 
(NO) and peroxynitrite anion (ONOO-), and sequen-
tially relieves cerebral oedema and inhibits delayed neu-
ron death [61]. In addition, we also found that EDA could 
play a protective role on cerebral ischemia-reperfusion 
injury by inhibiting apoptosis mediated by ER stress sign-
aling pathway, consistent with the previous study [62]. 
However, EDA is known to have a fairly short T1/2 and it 
should not be taken more than twice a day for those with 
impaired liver and kidney function based on its possible 
side effects [63]. Therefore, it is imperative to develop 
new pharmaceuticals. In preliminary study, it has been 
demonstrated that Sul-F at doses up to 2000 mg has no 
hepatorenal toxicity [64]. Additionally, we found that 
there was no difference between EDA (3  mg/kg) group 
and Sul-F-H (80  mg/kg) group in terms of therapeutic 
effect on cerebral ischemia–reperfusion injury, indicating 
the potential of Sul-F to be a clinical drug for the treat-
ment of ischemic stroke.

ER stress is one of the main molecular events underly-
ing the pathology of cerebral I/R injury [65]. Three major 
transmembrane proteins are involved in the ER stress-
activated UPR: IRE1, PERK and ATF4. All these proteins 
are coupled with the GRP78 and stay inactive under phys-
iological conditions. When the UPR is activated, after the 
GRP78 dissociation, the IRE1 and PERK oligomerize and 
phosphorylate to activate their downstream signals, and 
ATF4 is cleaved by the golgi and moves into the nucleus 
to act as a transcription promoter [66]. Subsequently, the 
activated PERK (p-PERK) promotes phosphorylation of 
eIF2α and activates selective translation of ATF4) [67]. 
ATF4 is an important mediator of UPR, which can pro-
mote cell survival by inducing amino acid metabolism, 
redox reaction, stress response and ER stress target genes 
of protein secretion. When cells are in stage of stress 
for a long time, ATF4 will activate the expression of its 
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downstream target CHOP, a pro-apoptotic gene [68]. A 
previous study has indicated that CHOP gene transcrip-
tion is one of the most critical pathways leading to apop-
tosis, and then, apoptosis can be regulated by regulating 
the expression of multiple anti-apoptotic and pro-apop-
totic genes, such as Bcl-2 and Bax [66]. In addition, acti-
vation of IRE1 can promote the downstream Caspase12 
signaling pathway to accelerate cell death [69]. Our pre-
sent results indicated that Sul-F exerted its protection via 
suppression of Caspase12 signaling pathway.

Therefore, ER stress signaling pathway could be consid-
ered as the key molecular or signaling transduction path-
way that modulates multiple targets in cerebral I/R injury. 
In the present study, we observed that I/R significantly 
activated ER stress evidenced by the increase in ATF4 as 
well as the hyper-phosphorylation of PERK and eIF2α, 
which was markedly reversed by Sul-F treatment. In con-
clusion, Sul-F treatment can rescue neurons against I/R 
injury through inhibiting PERK/eIF2α/ATF4 and IRE1/
Caspase12/Caspase3 associated apoptosis pathways in 
the penumbra (Fig. 5).

In summary, Sul-F treatment attenuates cerebral I/R 
injury by inhibiting ER  stress mediated apoptosis in 
ischemic penumbra through suppression of PERK/eIF2α/
ATF4 and IRE1/Caspase12/Caspase3 signaling pathway. 

Our findings shed light on the novel therapeutic strategy 
of the administration of Sul-F in ischemic stroke.
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